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Oscillations by symmetry breaking in homogeneous networks with electrical coupling
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In many biological systems, the electrical coupling of nonoscillating cells generates synchronized membrane
potential oscillations. This work describes a dynamical mechanism in which the electrical coupling of identical
nonoscillating cells destabilizes the homogeneous fixed point and leads to network oscillations via a Hopf
bifurcation. Each cell is described by a passive membrane potential and additional internal variables. The
dynamics of the internal variables, in isolation, is oscillatory, but their interaction with the membrane potential
damps the oscillations and therefore constructs nonoscillatory cells. The electrical coupling reveals the oscil-
latory nature of the internal variables and generates network oscillations. This mechanism is analyzed near the
bifurcation point, where the spatial structure of the membrane potential oscillations is determined by the
network architecture and in the limit of strong coupling, where the membrane potentials of all cells oscillate
in-phase and multiple cluster states dominate the dynamics. In particular, we have derived an asymptotic
behavior for the spatial fluctuations in the limit of strong coupling in fully connected networks and in a
one-dimensional lattice architecture.
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[. INTRODUCTION giving rise to oscillations via a Hopf bifurcation.
In this paper we generalize this mechanism, analyze the

The dynamics of diffusively coupled excitable elementsspatiotemporal structure of the oscillations near the bifurca-
can often be surprising. In the early 1950s, Turing showedion point and in the limits of strong coupling and fast mem-
that the homogeneous fixed point of a network of identicaPrane potential. We show that in this limit of strong coupling
elements, all at their stable fixed point, can be destabilize¢he dynamics of our mechanism resembles that of networks
by diffusive Coup"nq:l]_ Since then1 much experimental and of globa”y inhibited and mutua”y inhibited oscillators. Us-
theoretical work has shown that diffusion can break the spalnd Van Der Pol oscillators, we demonstrate our dynamical
tial symmetry of the system and generate stationary wavedechanism and analyze two network architectures: a fully
via a pitchfork bifurcation[2]. However, the case of spa- connected network and a one-dimentional lattice model.
tiotemporal symmetry breaking via a Hopf bifurcation has
received little attentioh3—5]. Il. MECHANISM FOR THE GENERATION OF NETWORK

The dynamics of electrically coupled elements, which is a OSCILLATIONS
special case of diffusive coupling, is of particular interest.
Electrical coupling between cells is very common in biologi-
cal systems. These connections, which are called gap junc- Our starting point is that the dynamics of the isolated cell
tions, arise when special proteins on the membranes of adj#s described by the set of differential equations of the form
cent cells align together to form a tunnel, which connects the

A. The isolated cell

cells and enables the diffusion of ions but not large proteins. V=-aV+bX, (1)
Gap junctions have been demonstrated to connect cells in
many tissues, including the cardiovascular system, the liver, X=—V+A(X,Y)

lungs, kidneys, and pancreas. Electrical synapses are also

common in the central nervous system, where they connect :

both glia cells and neurons. For example, electrical coupling Y=B(X,Y),

has been demonstrated to connect inhibitory neurons in the

cerebral and cerebellar cortices, hippocampal cells, photoravhereV is the membrane potential of the cell anklY) is a

ceptors and horizontal cells in the retina, and the neurons citate vector of two “internal variables” of the cell. These

the inferior olive. The dynamics of the neuronal networksinternal variables can represent, for example, the concentra-

both in the developmental stages and in the mature brain igons of different iong 7] or the membrane potential of other

strongly influenced by these connectid6s. compartments of the celB]. First we assume that for the
Interestingly, in some of these biological systems, theappropriate parametees andb, Eq. (1) has a single fixed

membrane potential of the isolated cells is constant, but ogoint (V*,X*,Y*), which is globally stable, reflecting the

cillates in the electrically coupled network, suggesting thaffact that the isolated cell is not oscillating. Without loss of

electrical coupling is essential for the generation of oscilla-generality we assume that the fixed point of EY.is (V*

tions. Recently we proposed a novel dynamic mechanism te= X* =Y*=0). Second we assume that the internal vari-

explain these oscillation7]. According to this mechanism, ables have a tendency to oscillate, i.e., when the voltage is

the spatiotemporal symmetry of the homogeneous stablaffixed to its fixed point valu& =0, the fixed point (0,0) of

state is broken when the electrical coupling destabilizes itthe equations
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X=A(X,Y), 2 : b <
XY @ v=—av+N2 X, (6)

_ =

Y=B(X,Y),

is unstable and Eq(2) has a single limit cycle attractor, Xi= = VA Yi) = oVi,

which is globally stable. Under these conditions, the stability

of the fixed point (0,0,0) of Eq) results from the negative Yi=B(Xi.Yy),
feedback, which is provided by the interaction of the internal ;- .o
variables with the dynamics of the membrane potential.
From the above it follows that the stability matrix of the 1 N
isolated cell dynamics, Eq1), at the zero fixed point V= N 21 Vi, (7)
—a b 0
. 9A(0,00 3A(0,0 NV=VimVs ®
Q= ax aY (3)  are the mean membrane potential across the network and the
= JB(0,0 B(0,0) fluctuations, respectively. The dynamics of the fluctuations
0 &X’ aY’ of the membrane potential is given by
is negative definite, whereas at least one of the eigenvalues 6V=-adV+bsX—-gGéV, ©

of the stability matrix of the internal variables dynamics, Eq.

(2), at its zero fixed point where the vector notation is over tienetwork cells

N
JA(0,00 IA(0,0 X=X — =S X; (10
X oY " N =1
Q'= 4 5
= JB(0,00 9B(0,0 and the matrixG is defined by
X Y - \
is unstable. Gij= 5ijqzl Giq— Gij 11

B. The network dynamics where 8 is the Kronecker delta function. Generalfy, has

We model a system ol identical elements of the type only one zero eigenvalue, which corresponds to the homoge-

given by Eq.(1), which are electrically coupled via their neous eigenvector. The projection & on all the heteroge-
membrane potential. The system dynamics is described byneous eigenvectors @ is of O(1). Thus, in the limit ofg

N >1 Eq.(9) becomes
Vi:_avi“beiJr,Zl 9 (V;— Vi), (5)

>

b. . .
wzag—15x+o (12)

. gz

Xi=—=Vi+A(X;,Y),
and thereforepV is of O(1/g). Taking the limit ofg—x,

Yi=B(X;.Y)), the network dynamics, Eq5) becomes
whereg;; =g;;=0 is the electrical coupling strength between . b N
theith andjth cells. V=—av+ o 21 Xi, (13
=

Our main question is whether in such a system, increasing
g;; beyond a critical value will generate network oscillations .

despite the fact that the fixed point of the isolated cell is Xj=—=V+A(X,Yi),
globally stable. We begin by showing the presence of oscil- .
lations in the limit of strong coupling and then we analyze Yi=B(X;,Y).

the behavior near the bifurcation point. ) o )

The dynamics of the membrane potenfiélin Eq. (13) is

only sensitive to perturbations of in the homogeneous di-

i o . rection. Therefore, the fixed point is only stable in the homo-
To define the limit of strong coupling, we assume thatgeneous direction but is unstable to perturbations in the het-

gij=9gi;, Whereg;; is of O(1) and take the limit ofg erogeneous directions. This can be readily seen by

—o0, Summing the voltage dynamics term in Ef) over all  linearizing Eg. (13) around the homogeneous zero fixed

cells we obtain point. The eigenvalues of the stability matrix are {eablg

C. The limit of strong coupling
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eigenvalues of the stability matrix of the dynamics of the b xH
isolated cell around the zero fixed pof@t which correspond vh=— =, (15
to the homogeneous direction and the eigenvalues of the 9G*

stability matrix of the dynamics of the internal variables
around the zero fixed poin®’, which correspond to the P I -
heterogeneous directions. Since by construct@nhas at wherev®,x* are the projections of the vecto/, X, re-

least one unstable eigenvector, the homogeneous zero f.xé&eCt'Ve'y’ on theuth heterogeneous eigenvector of matrix
point of Eq.(13) is unstable. G, andG* is the corresponding eigenvalue. In gene¥Alis
Note that there are no stable homogeneous solutions @f O(1), and up tocorrections ofO(1/g) its dynamics is
Eq. (13) because such a solution is described by the equletermined by Eq(13). Therefore, it is reasonable to assume
tions of the isolated cell, Eq1), which by construction has that oX is almost independent of the architecture and its

only one attractor, the zero fixed point. This implies that theprojections on all the heterogenous eigenvectors of m@rix
symmetry between the different paféX;,Y;)} is necessar-  are comparable. Therefore the spatial structure ofXtg)

ily broken in the asymptotic solution to E¢L3). Thus, al-  membrane potential fluctuations, which are determined by
though the internal variables of the different cells “see” the gq, (15), are dominated by the eigenvectors that correspond

same membrane potential, they respond to it dif“ferently.[0 the the smallest nonzero e|genvalue§30f
Therefore, the dynamics of the internal variables, with the

driving force V(t), in Eq. (13
D. The bifurcation point

Above we have seen that the homogeneous zero fixed

Xi==VO+ACY), (14 point (V;=X;=Y;=0) is stable in the absence of coupling,
but is unstable in the limit of strong coupling. Here we in-
V= B(X:.Y:) vestigate the bifurcation point, where the homogeneous fixed
[ ir Vi)

point is destabilized and oscillations emerge. Linearizing the
network’s dynamical equations, E¢p), around this homo-

has more than one asymptotic solution. Numerical simulageneous fixed point yields
tions of Eq.(13) with several different models of internal N
variables shoyv tha.t foNfZ, the internal variables of the \'/i: —aV+ E g (V; =~ Vi) +bX;, (16)
two cells oscillate in antiphase, whereas the mutual mem-
brane potential oscillates with double the frequency. When
N>2, the dynamics exhibits many different limit cycle at-
tractors, in which the activity of the internal variables of the =y 4 2800 AD
different cells is clustered into two or more clusters, with : : oX ! oy v
different numbers of cells in each cluster. An example of this
behavior is presented below.

Interestingly, Eq.(13) also describes the dynamics f Y:aB(O,O) X.+5B(O’0) v
excitatory oscillatory cellsX;,Y;), which are all coupled via ! X ! aY a
one inhibitory cellV. The dynamics of each of the oscillatory
cells, in isolation, is described by E), and each cell ex- . . . . .
cites one global linear inhibitory cell with a coupling It is convenient to represent the dynamical variables in terms
strengthb/N. The latter inhibits each of the excitatory cells Of the eigenvectors of the connectivity mat@e gG,
with a coupling strength of-1. WhenN=1, Eq. (13) re-
verts to Eq.(1) and the inhibitory cell suppresses the oscil-
lations of the excitatory cell. However, wh&>1, V exerts Vi= >, vARH, (17)
a global negative feedback, which suppresses the oscillations u=1
in the homogeneous direction but retains the instability in the
heterogeneous direction. Indeed, the study of the dynamics N
of networks of excitatory neurons, all coupled to one global X = 2

I

HRM
inhibitory cell has shown clustering of the excitatory cells xR
similar to our result$9].

In general,g has only one zero eigenvalue, which corre- N
sponds to the homogeneous eigenvector, and in the limit of
Yi= 2> YR,

g—o°, the network dynamics is independent of the details of
the architecture. However, wher» 1 butg<<ew, the connec-
tivity architecture influences the fluctuations in the mem-
brane potential of the different cells, which are @f1/g). where{RM} _, are the eigenvectors dab6 with the corre-
Taklng only O(1/g) elements in Eq(12) and decomposing sponding e|genva|uq£ﬂ~} . Substituting Eq(17) in Eq.
5V, 8X in terms of the eigenvectors G we get (16) uncouples the dn‘ferent cells and EG6) becomes

1

n
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—a—G* b 0 E. The limit of fast membrane dynamics
pH dA(0,00 9A(0,0) e Our mechanism requires that the membrane potential sup-
a9 el -1 X oy » presses the oscillations of the internal variables in the iso-
dt N : lated cell by exerting a negative feedback. This can also be
y* 0 dB(0,0 dB(0,0) | \ y* achieved if the dynamics of the membrane potential is in-
oX oY stantaneous. Changing the time constant of the membrane in

(18 Eq. (1) is equivalent to changing,b while keeping the ratio
b/a constant. In the limit of fast membrane dynamics, the
Equation(18) is, in fact, the linearized equation of an iso- membrane potential follows its fixed point equations, and
lated cell around its zero fixed point, with an additional pas-Eq. (5) becomes
sive conductanc&*. Thus, near the fixed point the system )
dynamics can be mapped into the dynamics of an isolated X=—b(G+al) IX+A(X;,Y), (20)
cell with additional “stabilizing” terms, = 7

V=—(a+G*)V+bX, (19) Y=B(X;.Y)),
: where Ai=A(X;,Y;) and B{=B(X;,Y;). WhenN=1, Eq.
X==V+A(X,Y), (20) describe the dynamics of the isolated variables with an
) extra negative feedback term for variable of strength
Y=B(X,Y). b/a. If Q' and b/a are such that tQ')<b/a

<[Q’]/4B(0,0)/aY], then forN =1, this negative feedback

Hence, the homogeneous fixed point of the system is destavill stabilize the fixed point. However, wheN>1, diago-
bilized by electrical coupling if and only if there exists ei- nalizing Eq.(20) around the homogeneous fixed point re-
genvalueG* such that the fixed point of Eq19) is unstable. veals that whereas the strength of the negative feedback in
The eigenvalue that corresponds to the homogeneous eigetire homogeneous direction remaibs$a, it decreases to
vector of G is G"=0. Hence, instability can only arise in a b/(a+G*) in the heterogeneous directions, whe¢ are
heterogeneous direction. As we have seen above, in the limihe eigenvalues & that correspond to these directions. For
of strong coupling, the homogeneous fixed point becometarge enougtG*, this negative feedback is too weak to sup-
unstable. This implies that for a sufficiently largg*, the  press fluctuations and the homogeneous zero fixed point is
zero fixed point of Eq(19) is unstable. Thus, as the overall no longer stable. This bifurcation takes place for
coupling strength is increased, instability arises when th&°=b/tr(Q’)—a, and the simplest scenario is a Hopf
largest eigenvalue of matri exceeds a critical valu&®.  bifurcation, which leads to oscillations.
Since the dynamics of Eq2) consists of an unstable fixed In the limit of strong coupling, in gener@(G+ al_)‘l]ij
point and a stable limit cycle, the simplest scenario for the—1/aN and Eq.(20) yields o
generation of the network instability is via a Hopf bifurca-
tion. When the bifurcation is a normal Hopf, the frequency of .
the oscillations near the bifurcation is determined by the Xi=~—
imaginary part of the conjugate eigenvalues of the stability
matrix around the zero fixed point of E@l9), with G* )
=G°. Thus, near the bifurcation point, the frequency of the Yi=B(Xi,Yi),
oscillations is only dependent on the properties of the iso-
lated cell and is independent of the architecture. In contrastvhich represents the dynamicsMfoscillators that mutually
the spatial structure of the oscillations near this bifurcationinhibit each other. Numerical simulations of E@1) with
point is determined by the eigenvector, which Corresponds tgif‘ferent nonlinear models show similar Clustering behavior
the largest eigenvalue @&. This eigenvector depends solely to those observed with the dynamics of E@3). Similar
on the architecture of the electrical connections and is indetesults have been observed in the study of the dynamics of
pendent of the properties of the isolated cell. Note that manetworks of cells, mutually coupled with inhibitory synapses
trix G is real and symmetric and thus its eigenvectors aré10].
real. Therefore, if there is no redundancy in the largest ei-
genvalue, all cells will oscillate either in phase or in anti- ll. ELECTRICALLY COUPLED MODEL
phase, depending on the corresponding eigenvector. In the WITH A Van Der Pol OSCILLATOR
case ofN=2, there is only one heterogeneous eigenvector
and the two cells will oscillate in an antiphase direction.

Thus, near the bifurcation point, the architecture of the Our mechanism can be realized with different nonlineari-
network influences the dynamics of the network via the eities of the internal variables. Here we demonstrate it in a
genvector, which corresponds to the largest eigenvalue. Imodel where the dynamics of the internal variables, 2.
contrast, in the limit of strong coupling, it is the eigenvectorsis described by a Van der Pol oscillafdrl],
that correspond to the smaller eigenvalues that contribute )
more to the dynamics of the network. X=-=Y+0.4X(5+Y—Y?), (22

N
> XA, (21)
i=1

Q| T
Zl -

A. The model
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FIG. 1. Oscillations of the internal variables. The zero fixed \/\/\Ah
point of Eq.(22) is unstable and the dynamics converges to limit -20 : . . .
cycle oscillationga), in X and(b) in Y. 0 5 10 t 15 20 25

FIG. 2. The isolated cell is not oscillating. The zero fixed point
of Eq. (23) is stable and after a perturbation the internal variables

] ) ] ) (a), Xand(b), Y and(c), the membrane potential converge to the
These equations have one fixed point at (0,0). Linear stabikero fixed point.

ity analysis reveals that this fixed point is unstable, and nu-

meric simulations show that these equations have only one  dertoi tiqate the effect of the electrical i
attractor, which is a limit cycléFig. 1). n order to investigate the effect of the electrical coupling on

The isolated cell is generated by linear coupling one OI{he dynamics of the network it is useful to analyze the sta-

the internal variableX to a passive membrane potentil bility of the homogeneous zero fixed point. Linearizing Eq.
yielding (24) around its zero fixed point and applying the Routh-

Hurwitz condition reveals that the fixed point is unstable if

V=—aV+bX, 23) and only if the Iar.g!est eigenvalue of the connectivity matrix
G exceeds the critical valug®= (1+ \J5)/2, and the type of

bifurcation is Hopf. Figure 3 illustrates the dynamics of Eq.

Y=X.

X==V=Y+0.4X(5+Y-Y?), (24) near the bifurcation point, where the largest eigenvalue
of the connectivity matriG is equal toG®+ 0.02. Numerical
Y=X, simulations show that the bifurcation is a normal Hopf and
thus, the spatial structure of the asymptotic solution near the
wherea,b=0 are parameters. bifurcation point is determined by the eigenvector that cor-

Linearizing Eq.(23) around the fixed point (0,0,0) and responds to the largest (_aigenvalue. V\_/hEnZ, the dir_ection
applying the Routh-Hurwitz condition, we find that the fixed Of the heterogeneous eigenvector@fis (1,—1). This an-

b - - N~ tiphase structure of the oscillations is shown in Figg) 3or
oint is stable if and only ib>8 and p+4— \b?—8b)/4
p<a<(b+4+ \/52—_8b)/4y b ) N=2. When the number of cells is larger, the relative phases

Figure 2 shows the dynamics of E@®3) with a=3: b and amplitudes of the membrane potential oscillations of the
=10. In contrast to the unstable zero fixed point and thetlj_lkl:f.ergn't"cells |s§gte'r:m|ned by thefcorll\ln_ecz‘ltlvlltysrchmta)cture.
stable limit cycle of Eq(22) shown in Fig. 1, the zero fixed Is s lllustrated in Figs. @’)_3((:? oriv=2. n g 3b),
point of Eq.(23) is stable and numeric simulations suggestcefnS 2-4 are connected to the first c_eII W'th the same cou-
that it is also globally stable, in agreement with the requireplmg strength, and therefore the oscillations closely follow

ments of our mechanism as described above. the e|ger_1vector (31-1,-1), Wh'gh corresponds to the
largest eigenvalue of the connectivity matf In contrast,

the connectivity of the cells in Fig.(® is a nearest neighbor

B. The bifurcation point along a line with equal coupling strength. In this case the
The dynamics of the electrically coupled network is de-eigenvector (11— 2,1+ y2,— 1) corresponds to the larg-
scribed by est eigenvalue of the connectivity mati®& and this is re-

\ flected in the spatiotemporal structure of the oscillations.
Vi:_avi+bxi+,21 g9ij(V;=Vi), (24)
= C. Infinite coupling

In the limit of infinitely strong coupling, the membrane
potentials of the different cells are equal and their dynamics
) is determined by the dynamics of the mean membrane po-
Y, =X;. tential. Thus, Eq(24) is reduced to

Xi=—Vi—Y;+0.4%,(5+Y;— Y),
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FIG. 3. Network oscillations near the bifurcation point. Simu- -5 -5
lating Eq.(24) with the largest eigenvalue of the connectivity ma- 0 10 20 0 10 50

trix G being equal taG°+0.02 shows that the spatial structure of t t

the membrane potential oscillations is determined by the eigenvec-
tor that corresponds to the largest eigenvalag N=2: The two . _ . -
consecutive traces represent the time course of the membrane po- Fllg 4 Sc_:lusltetl_rlng Ef n2e5twor:<ho§c_|lljmons Iltn t.het“m'ttOf strorflg
tential oscillations of the two cells with connectivity gi=0.819. coupling. simuiating a(2s) wi —4 resulis in o types o
The only nonzero eigenvalue @& corresponds to the heteroge- asymp_totlc solutions depending on the initial 'condltlo'ia;.CIus-
neous eigenvector-{1,1). This is reflected in the antiphase shapete”ng into two clusters(al) The four consgcutlve trages represent
of the membrane potential oscillationg) The four consecutive _the time course oK for the four cells. The internal vanab!es group
traces represent the time course of the membrane potential oscill:L;p-_tO_tWo clusters Of_ two ceIIs[(l,Z),(_3,4j,_ where QSCIIIatlons_
tions of cells 1—4top to botton) in a network wherd\=4. In this within a cluster are in-phase but are in antiphase with the oscilla-
network, cell 1 is connected to cells 2—4 with a coupling strength ofions of th% other cIl:st?_;rThlsz|sAref_Iected n t.hf( shape Offthtﬁ com-
g=0.4095. The eigenvector, which corresponds to the Iargesteigermon membrane potential. (a2 An increase inX in one of the
value of the connectivity matrisG, is (3—1,—1,—1), and the clusters generates an increaseVinThus, the frequency of mem-
membrane potential oscillations of the four cells closely follow this brane pote.ntlal. oscillations is double that of the. |lnternal ygrlables.
eigenvector(c) Identical to(b) with a different connectivity matrix. (b) Clqsterln_g into four clustt_ers(.bl) I_Dn‘ferent .|n|t|al condltlpns
Here the four cells are placed along a straight line with nealresgesult in a different asymptotic solution. In this case, the internal
neighbors coupling strength gf=0.4798. The eigenvector that cor- variables of each of the cells oscillate out of phase with respect to

. . all other cells.(b2) An increase inX in one of the cells generates a
responds to the largest eigenvalue is{1,-+2,1++2,—1) and . . .
P g 9 A1-2,142,~1) . Ssmaller increase i/, and the frequency of membrane potential

. . . . oscillations is four times that of the internal variables. Note that the
The size of the vertical bar ife)—(c) is 0.5. . . . -
®-( time courses of the internal variables oscillatiofas) and(b1) are
very similar to the oscillations of in Fig. 1(a), where there was no

o b % interaction with membrane potential. The size of the vertical bar in
V=-aV+ N & Xis (25 (al) and(bl) is 10.
K= —V—Y;+0.4X(5+Y, _Yiz), of time and in Figs. éa2) and 4b2) their common membrane

potential is shown as a function of time. In Figad), the
) internal variables of the cells cluster into two clusters of two
Yi=X;. cells: [(1,2),(3,4). The existence of these two clusters is
reflected in the spatiotemporal structure of the membrane
Since the homogeneous solution of EZ5) is unstable, the potential oscillations, Fig. (42). An increase inX in one of
symmetry between the different cells is broken and thehe clusters generates an increaseVinand thus the fre-
asymptotic solution is heterogeneous. Numerical simulationguency of membrane potential oscillations is double the fre-
show that in these solutions the internal variables group intguency of the internal variables oscillations. This type of
several clusters. The internal variables within each clustesymmetry breaking implies that there exist two additional
oscillate in phase but not in phase with those of the cells irstable asymptotic solutions with the same membrane poten-
other clusters. The type of symmetry breaking determines thgal oscillations but with different clustering pairs of the in-
number of such different heterogeneous solutions, all withternal variables{(1,3),(2,4),[(1,4),(2,3). In addition to
the same shape of the common membrane potential oscillthese solutions, numerical simulations show that this system
tions but each with different cells having a different phase ofexhibits another type of typical symmetry breaking. This so-
internal variables oscillations. This is illustrated in Fig. 4, lution, which is characterized by a different clustering solu-
where Eq.(25) is simulated withN=4. In Figs. 4al) and tion is illustrated in Fig. 4). In Fig. 4(b1), the internal
4(b1) the values o for the four cells is shown as a function variables of all four cells oscillate out of phase with respect
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' ' ' D. Strong coupling

When the coupling is finite, the network dynamics is de-
pendent on the connectivity architecture and on the coupling
strength. Here we analyze how the coupling strength influ-
ences the network behavior in the strong coupling regime for
two network architectures: fully connected network and one-
dimensional lattic€also known as the “ring mode)’

1. Fully connected network

Here we analyze the dynamics of a network where all
cells are coupled to all the other cells with the same coupling
strengthg. In this case the connectivity matri@ has one
zero eigenvalue, which corresponds to the homogeneous di-
rection and\ — 1 eigenvalues, all equal ®N, which corre-
spond to the heterogenous directions. Hence, the proper scal-

i_ng of the coupling strength ing/N. How does the size of

g influence the network dynamics? Numerical simulations
show that the existence of several nontrivial clustering solu-
tions, which are seen in the infinite coupling regime, is re-

tained even wheﬁis of O(1). This behavior is illustrated in
Fig. 6, where Eq.24) is simulated for a fully connected

network withN=4 andg=32. In Fig. Ga), the cells are
clustered into two clusters of two cells, similar to Figay
whereas in Fig. @) the cells are grouped into four clusters,
similar to Fig. 4b). The main effect of havingjnite g is the
presence of spatial fluctuations in the membrane potential, as
is evident in Figs. @2 and b2) [compare with Figs. @2

FIG. 5. Clustering of network oscillations in a large network. and 4b2)]. In the limit of strong coupling, these spatial fluc-
Simulating Eq.(25) with N=500 typically results here in the for- tuations are determined by E@.5). Since all nonzero eigen-
mation of three to four cluster¢a) The time courses oX for 30 alues ofG are equal t@ in the limit of 5>1, the mem-

randomly chosen cells show clear clustering into four clusters o = . ) .
varying sizes.(b) This clustering is reflected in the shape of the rane potential fluctuations are determined by

common membrane potenti&. An increase inX in one of the
clusters generates an increaseMnand the amplitude of the in- 1 . 5 b 1 . 5
crease is dependent on the number of cells in the cluster. The size of AV= N” 5V|| = E N” oX||?). (26)

the vertical bar in(a) is 10.

0 5 10 15 20
t

to all other internal variables. Thus, the frequency of theHere 8X is determined by the clustering configuration and is

membrane potential oscillations, Figh2), is four times that of O(1) with corrections that are dd(1/g). This is illus-

of the internal variables. This type of symmetry breakingtrated in Fig. 7 that shows the standard deviation of the fluc-
generates five additional solutions, all with the same structuations, averaged over the four cells and over 200 time units
ture of membrane potential oscillations but with a diﬁerentas a function of :E Similar to F|gs 4 and 5, different initial

ordering of the internal variables. ~ conditions could result in clustering into two clustede-
We have simulated large networks of up to 500 cells innoted here by crossesr four clusters(denoted here by
the limit of infinitely strong coupling. The asymptotic solu- poxes3. Note that each clustering solution forms a straight

t@on to Eq.(25) with N=500 depends on the initial condi- line with a different slope, reflecting the different shapé?of
tions, and typically, the network forms three to four cIusters,in the asymptotic solution.

where the number of cells in each cluster differs. This is
illustrated in Fig. 5: the internal variablesof 30 randomly
chosen cells are shown in Fig(& and the common mem-
brane potential is shown in Fig(H. The oscillations of the The dependence of the fluctuations\iron the coupling
internal variables in Fig. (@) show clear clustering into four strength in a one-dimensional lattice model is more complex.
clusters. An increase iX in one of the clusters corresponds Here we analyze a model in which each cell is coupled to its
to an increase iV, Fig. 5b), and the amplitude of this in- two nearest neighbors with equal coupling strengttvith
crease is monotonous with the number of cells in the clusteperiodic boundary conditions. The eigenvectors of the con-
Thus, the detailed shape of the common oscillating potentiatectivity matrixG in this model are the Fourier modes, and
bears a signature of the clustering structure of the internahe eigenvalues aré=2g([1—cos(27k/N)], k=1, ... N.
variables. Thus, in the thermodynamical limit, whé¥h— oo, the eigen-

2. One-dimensional lattice

051926-7



YONATAN LOEWENSTEIN AND HAIM SOMPOLINSKY PHYSICAL REVIEW E65 051926

0.2

(b1) |

3
5

o
—
o
\N]
o
o

10

N
o

@) | (b2) |

<

-

o
—
o
\N]
o
o

10 20 0 1 2 3 4 5
t t g’ x107°

FIG. 6. Clustering of network oscillations with moderate cou-

pling. Slmulat|ng.Eq_.(24) with N=4 ahd a connectivity a.rchltec- function of the coupling strength in a fully connected network.

ture of all to all withg; ;=32 reveals similar patterns to Fig. @ i L o = ]

Clustering into two clustergal) The four consecutive traces rep- Equatlon(2_4) is simulated withN=4 andg.;=g/N for different

resent the time course of of the four cells. The internal variables Values ofg. The fluctuations were calculated by computiny

group into two clusters of two cells, similar to Fig(ad). (a2 The = (8V?), where the mean is taken over the four cells and over 200

membrane potentials of the four cells. Note that an increaeifin time units. Crosses represent events in which the initial conditions

one cluster generates an increas¥ in the cells in that cluster, and resulted in grouping of the cells into two clusters, similar to Figs.

a smaller increase iV in the cells of the other cluster, which is 4@ and &a) and the boxes represent events in which the initial

induced via the electrical connectior(s) Different initial condi-  conditions resulted in grouping of the cells into four clusters, simi-

tions result in a different asymptotic solution. In this case, the in-lar to Figs. 4b) and @b). Each type of asymptotic solution forms a

ternal variables of each of the cells oscillate out of phase withstraight line, with a different slope in agreement with EXp). The

respect to all other cells, similar to Fig(bd). This is reflected in  different slope results from the different shape Xf in the

the shape of the membrane potential oscillations of the differenasymptotic solution.

cells(b2). An increase ifX in one of the cells generates an increase

in Vin the corresponding cell, and a smaller increas¥ in all the sinceg>1, most of the contribution tdV comes from the

other cells. The size of the vertical bar(@l and(bl) is 10 andin  smallk, andAV can be written as

(a2 and(b2) is 5.

FIG. 7. The spatial fluctuations in the membrane potential as a

2
values with small values ok are small even wheg>1. a .,

Thus, the fluctuations in the membrane potential cannot be % Jg'
approximated by Eq(15). Rewriting Eq.(9) in the spatial AV - dQI do| ———— . (29
and temporal Fourier space we obtain VgJzman at+q°-iwb

X

bx(w) Most of the contribution to the integral overcomes from
(27 g=0(1). Thus, assuming thaf(s, w) is smooth with respect
to s, we approximate Eq29) by

k _
V\W)xm
() a+Gk—iwb

wherev*(w) and x*(w) are the Fourier coefficients of the

membrane potentidf(t) and the internal variableX(t), re- Vor \/1 . J’ do X(0,w) 30
spectively. Using Parseval's theorem, the mean spatial fluc- \fg 2mGIN a+q?—iwb
tuation of the membrane potential is
N=T Equation(30) determines the scaling behavior AV in the
— \/1 D f do|vX(w)|? (29) limit of large N andg. We first consider the themodynamic
N &1 ' limit, where the limit of largeg is taken after theN—oo

limit. In this case, the lower limit of the integral goes to zero
Next we assume that(w) is only weakly dependent ok and Eq.(30) yields

Indeed, numerical simulations show that fpN>1, X has a
considerable projection on all the eigenvectorsofThus, AVog~ 14, (31
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10'

10°

FIG. 8. The spatial fluctuations in the membrane potential as a
function of the coupling strength in a one-dimensional neares

neighbor lattice model. Equatid@4) is simulated withN= 200 and
0ij=9(6; j+1+ &i j—1) and periodic boundary conditions. The value
of g is initially set tog=3.3x10%, and every 1000 time unitg is
reduced by 22%. For every value @fAV is calculated by averag-
ing over 200 time units and is displayed in a log-log plot. The
slopes of the straight lines arel and— 0.25. For large values @
AVel/g, in agreement with Eq32). For smaller values o, the
slope becomes less negative, in agreement with(&4. In this
regime, almost every decreasegichanged the clustering pattern in
the network, resulting in large fluctuations in the valueAdf for
adjacent values dj.

This behavior is valid in a finite, but large systems in the

regime ofg<N?Z. In contrast, whe>N?2, the lower limit of
the integral dominates the result and E80) becomes

1
AVocEN?*’2 (32

in agreement with Eq(15). This behavior is illustrated in
Fig. 8, where the dynamics of E@24) is simulated in a
one-dimensional lattice model oN=200, with nearest
neighbor connectivity and periodic boundary conditiohy.

is plotted as a function of. The slopes of the two straight
lines are—1 and—%. In theg>N? regime,AV is inversely
proportional tog, in agreement with Eq(32). As g de-
creases, the slope dfV vs g decreases, which is consistent
with Eg. (31). In contrast to the smooth behavior in the
>N? regime, wherg<N? there are large fluctuations in the
value of AV for adjacent values of. These fluctuations
result from the fact that in this regime, changimgesulted in

PHYSICAL REVIEW E65 051926
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FIG. 9. The scaling behavior of a one-dimensional nearest
eighbor lattice model. Equatiorf24) is simulated with g;;
=g(dij+11+d;-1) and periodic boundary conditions fod=10
(circles, 20(starg, 50 (crossel 100(boxes, 200(triangles. AV is
calculated for different values @f in the same paradigm as in Fig.
8. AVgN~%2is shown as a function dfi?/g. The straight line has
a slope of—0.75. Note that\V can be approximated by the scaling
law of Eq. (33). The fluctuations from the scaling in tid?/g<1
regime result from the fact that the initial conditions are random,
thus resulting in different patterns of clustering for each valul,of
which result in a different value df(0).

of xX¥(w). SinceAV is proportional toc(w), the changing of
the clustering pattern for adjacent valuesgofenerates the
“noise” in Fig. 8.

Equation(30) can be used to derive a scaling function for
AV, which holds in the intermediate regime,

N2
ol

where F(Z—0)=0(1) andF(Z—ox)xZ~%4 This scaling
behavior is illustrated in Fig. 9, where E@4) is simulated
for one dimensional lattice models with different values\Nof
andg in the same paradigm as in Fig.8YgN~*?is shown
as a function oiN?/g. The straight line has a slope ef3.
The simulations results show that, inde&dy can be de-
scribed by the scaling law as in E@3). Note, however, that
different initial conditions result in different clustering pat-
terns. Since the initial conditions are random, they differ in
the simulations for the different values bf and therefore
the value ofF(0) is slightly different for the differenN.

1
AV=§N”F< (33

IV. DISCUSSION

A. Summary of the main results
Electrical coupling is often considered to synchronize and

changing the clustering pattern, thereby changing the valughus homogenize the activity of electrically coupled net-
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works. This paper, together with previous works, shows thabf the species. In a discrete version of their model, an in-
electrical coupling can destabilize the homogeneous regtrease in the coupling strength generates oscillations via a
state and break the spatiotemporal symmetry in the networkdopf bifurcation. However, these oscillations are limited to a
This paper deals with the mechanism for the generation otrict regime of coupling strengths, and in the limit of strong
oscillations by electrical coupling of identical nonoscillating coupling the homogeneous fixed point is stable. This differ-
excitable elements. The basic concept is that the interactioance results from the fact that the fixed point of the “internal
of the membrane potential with the internal variables supvariables,” Eq.(2) is stable in their model, but is unstable in
presses the tendency of the latter to oscillate. The electricalur mechanism.
coupling diminishes the suppression capability of the poten- A mechanism for generation of oscillations by electrical
tial in the heterogeneous direction, thereby destabilizes theoupling, which relies on heterogeneity in the properties of
homogeneous fixed point and gives rise to oscillations via @he coupled cells, has been propo$#d,14. In this mecha-
Hopf bifurcation. Thus, the homogeneous fixed point is un-nism, although the isolated cells do not oscillate, when they
stable even for arbitrarily large coupling strengths, where theare strongly coupled they behave similarly to an isolated cell
membrane potentials of the different cells oscillate almostvith “average” properties. This “average” cell is oscillatory.
in-phase. This mechanism leads to a surprising, but simpl&hus, similar to our model, oscillations in this case are
experimental prediction: affixing the membrane potential ofpresent even for arbitrarily strong coupling. However, in the
an isolated cell to its resting potential valamltage clamp  heterogeneous model, the internal variables lock in a unique
will generate oscillations of the internal variables, which will fashion to the oscillating potential and therefore they oscil-
generate oscillations in the current needed for the clampindate in phase. It is the heterogeneity in the properties of the
When the bifurcation is normal, the frequency of the os-different cells that enables a moderate current flow even
cillations near the bifurcation point is solely dependent onwhen the membrane potentials of the cells are very similar,
the properties of the isolated cell and is independent of thend thus generates the oscillatory behavior. In contrast, our
architecture. In contrast, the spatial structure of the oscillamechanism does not rely on heterogeneity in the isolated
tions is determined by the network arChiteCtUre, WhiCh, ince”S properties_ The heterogeneity iS generated by a Sponta_
general, leads to either in-phase or antiphase oscillations. negus symmetry breaking, in which the internal variables of

_Particular emphasis was given to the limit of strong cou-he gifferent cells lock to the common membrane potential in
pling, with different network architectures. When the cou- 5 gitferent manner.

pling strength is infinite, the network dynamics has many
attractors, which are characterized by the grouping of the
different cells into several clusters. When the coupling is
strong but not infinite, the clustering solutions are retained, Several biological systems including the inferior olive, the

but the spatial fluctuations of the membrane potential depenibcus coeruleus, th8-pancreatic cells, and the aortic smooth

on the network architecture. In the fully connected networksmuscle cells exhibit oscillations that depend in some way on
the fluctuations in the membrane potential are inversely proelectrical coupling. Network oscillations in these systems are
portional to the coupling strength. In contrast, in the one-ysually synchronized and in-phase, which is consistent with
dimensional lattice model, we have shown that there are twgyr mechanism, but not with the homogeneous models de-

asymptotic regimes, depending on the way of taking the limitscrihed above. Our proposed mechanism may be applicable

of large network and strong coupling. _ to some of these systems. Of particular importance are the
In ggneral, our mechanism characterlzes a large fgmny Obpssible clinical implications of our dynamical mechanism.
_dynaml_cal systems. For reasons of clarity, we have dl_scuss has been suggested that in Creutzfeldt-Jakob disease, fu-
I hgre Ina less general form, where the number of Interna ion of neuronal processes, particularly dendrites, may lead
variables is two, the dynamics of the membrane potential i ; .
. L 0 abnormal electrotonic coupling between the cells, gener-
linear, and the membrane potential is linearly coupled to one

of the internal variables. However, since much of the analy-atlng periodic EEG dischargqd5]. In addition, we have

sis is done by linearizing near the fixed point, the generali-rec,:,ently appl_led our mechamfm to explain the phenomenon
zation to more complex models is straightforward. of _aIcohoI withdrawal Frempr. Long—tgrm abuse of alCOhOI.’
which blocks the gap junctions, may induce a strengthening
of the electrical coupling in the inferior olive. During the first
days of abstinence, the excessive electrical coupling causes
Another model in which electrical coupling of identical exaggerated synchronized membrane potential oscillations,
nonoscillating cells generates oscillations was proposed bwhich manifest as a large amplitude trenfia6].
Sherman and Rinzdll2]. In their model, in addition to a This mechanism can be realized in different biophysical
stable fixed point, stable oscillations of the membrane potenmodels. Elsewher¢7] we have proposed that the internal
tials exist in a restricted range of values of the electricalvariables are the calcium concentrations in the cytoplasm of
coupling. The bifurcation in their model is far from the ho- cells and in cellular organelles; e.g., endoplasmatic reticulum
mogeneous fixed point, and thus the fixed point remaingnd mitochondria. Instability of these internal variables
stable for all coupling strengths. Ermentrout and Lejfis  arises from the calcium-induced calcium release current. An
proposed a continuum model of population dynamics, inincrease in the calcium concentration in the cytoplasm trig-
which oscillatory behavior is dependent on diffusion of onegers the opening of calcium channels in the organelles, in

C. Relevance to biological systems

B. Comparison to other mechanisms
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which the calcium concentration is much higher, causing das been described in cortiddl8] and cerebellar inhibitory
flow of calcium from the organelles to the cytoplasm. Thisneurons[19] as well as in the hippocampiig0] and locus
positive feedback loop is terminated with the depletion ofcoeruleus[21]. In all these studies it has usually been as-
calcium from the organelldd7]. The stability of the isolated sumed that electrotonic coupling serves as a synchronizing
cell results from the interaction of the calcium concentrationdevice, or as a fast excitatory pathway. In this work we sug-
in the cytoplasm with the membrane via the calcium depengest that in addition, electrical coupling can serve as a gen-
dent potassium current and the voltage dependent calCiugyator of oscillatory activity. Although one would expect that
current. Alternatively, this mechanism can be realized in &gcillatory activity, which is associated with electrotonic
network of two-compartment neurons. One compartment igqoypling, will be rather homogeneous, we have shown that it
an excitable soma whose parameters play the role of thgges not decrease the flexibility of the network. On the con-

internal variables, and a passive dendrite whose membrangyy it furnishes it with a wide range of dynamic features.
potential plays the role o¥. The isolated soma of the neu-

rons is oscnlat.ory. but its interaction wqh the dendrite damp- ACKNOWLEDGMENTS
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