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Oscillations by symmetry breaking in homogeneous networks with electrical coupling
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Racah Institute of Physics and Center for Neural Computation, Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 26 December 2001; published 24 May 2002!

In many biological systems, the electrical coupling of nonoscillating cells generates synchronized membrane
potential oscillations. This work describes a dynamical mechanism in which the electrical coupling of identical
nonoscillating cells destabilizes the homogeneous fixed point and leads to network oscillations via a Hopf
bifurcation. Each cell is described by a passive membrane potential and additional internal variables. The
dynamics of the internal variables, in isolation, is oscillatory, but their interaction with the membrane potential
damps the oscillations and therefore constructs nonoscillatory cells. The electrical coupling reveals the oscil-
latory nature of the internal variables and generates network oscillations. This mechanism is analyzed near the
bifurcation point, where the spatial structure of the membrane potential oscillations is determined by the
network architecture and in the limit of strong coupling, where the membrane potentials of all cells oscillate
in-phase and multiple cluster states dominate the dynamics. In particular, we have derived an asymptotic
behavior for the spatial fluctuations in the limit of strong coupling in fully connected networks and in a
one-dimensional lattice architecture.
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I. INTRODUCTION

The dynamics of diffusively coupled excitable elemen
can often be surprising. In the early 1950s, Turing show
that the homogeneous fixed point of a network of identi
elements, all at their stable fixed point, can be destabili
by diffusive coupling@1#. Since then, much experimental an
theoretical work has shown that diffusion can break the s
tial symmetry of the system and generate stationary wa
via a pitchfork bifurcation@2#. However, the case of spa
tiotemporal symmetry breaking via a Hopf bifurcation h
received little attention@3–5#.

The dynamics of electrically coupled elements, which i
special case of diffusive coupling, is of particular intere
Electrical coupling between cells is very common in biolo
cal systems. These connections, which are called gap j
tions, arise when special proteins on the membranes of a
cent cells align together to form a tunnel, which connects
cells and enables the diffusion of ions but not large prote
Gap junctions have been demonstrated to connect cel
many tissues, including the cardiovascular system, the li
lungs, kidneys, and pancreas. Electrical synapses are
common in the central nervous system, where they con
both glia cells and neurons. For example, electrical coup
has been demonstrated to connect inhibitory neurons in
cerebral and cerebellar cortices, hippocampal cells, phot
ceptors and horizontal cells in the retina, and the neuron
the inferior olive. The dynamics of the neuronal networ
both in the developmental stages and in the mature bra
strongly influenced by these connections@6#.

Interestingly, in some of these biological systems,
membrane potential of the isolated cells is constant, but
cillates in the electrically coupled network, suggesting t
electrical coupling is essential for the generation of osci
tions. Recently we proposed a novel dynamic mechanism
explain these oscillations@7#. According to this mechanism
the spatiotemporal symmetry of the homogeneous st
state is broken when the electrical coupling destabilizes
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giving rise to oscillations via a Hopf bifurcation.
In this paper we generalize this mechanism, analyze

spatiotemporal structure of the oscillations near the bifur
tion point and in the limits of strong coupling and fast mem
brane potential. We show that in this limit of strong couplin
the dynamics of our mechanism resembles that of netwo
of globally inhibited and mutually inhibited oscillators. Us
ing Van Der Pol oscillators, we demonstrate our dynami
mechanism and analyze two network architectures: a f
connected network and a one-dimentional lattice model.

II. MECHANISM FOR THE GENERATION OF NETWORK
OSCILLATIONS

A. The isolated cell

Our starting point is that the dynamics of the isolated c
is described by the set of differential equations of the for

V̇52aV1bX, ~1!

Ẋ52V1A~X,Y!,

Ẏ5B~X,Y!,

whereV is the membrane potential of the cell and (X,Y) is a
state vector of two ‘‘internal variables’’ of the cell. Thes
internal variables can represent, for example, the concen
tions of different ions@7# or the membrane potential of othe
compartments of the cell@8#. First we assume that for th
appropriate parametersa and b, Eq. ~1! has a single fixed
point (V* ,X* ,Y* ), which is globally stable, reflecting th
fact that the isolated cell is not oscillating. Without loss
generality we assume that the fixed point of Eq.~1! is (V*
5X* 5Y* 50). Second we assume that the internal va
ables have a tendency to oscillate, i.e., when the voltag
affixed to its fixed point valueV50, the fixed point (0,0) of
the equations
©2002 The American Physical Society26-1
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Ẋ5A~X,Y!, ~2!

Ẏ5B~X,Y!,

is unstable and Eq.~2! has a single limit cycle attractor
which is globally stable. Under these conditions, the stabi
of the fixed point (0,0,0) of Eq.~1! results from the negative
feedback, which is provided by the interaction of the inter
variables with the dynamics of the membrane potential.

From the above it follows that the stability matrix of th
isolated cell dynamics, Eq.~1!, at the zero fixed point

Q5F 2a b 0

21
]A~0,0!

]X

]A~0,0!

]Y

0
]B~0,0!

]X

]B~0,0!

]Y

G ~3!

is negative definite, whereas at least one of the eigenva
of the stability matrix of the internal variables dynamics, E
~2!, at its zero fixed point

Q85F ]A~0,0!

]X

]A~0,0!

]Y

]B~0,0!

]X

]B~0,0!

]Y

G ~4!

is unstable.

B. The network dynamics

We model a system ofN identical elements of the typ
given by Eq. ~1!, which are electrically coupled via the
membrane potential. The system dynamics is described

V̇i52aVi1bXi1(
j 51

N

gi j ~Vj2Vi !, ~5!

Ẋi52Vi1A~Xi ,Yi !,

Ẏi5B~Xi ,Yi !,

wheregi j 5gji >0 is the electrical coupling strength betwe
the i th and j th cells.

Our main question is whether in such a system, increas
gi j beyond a critical value will generate network oscillatio
despite the fact that the fixed point of the isolated cell
globally stable. We begin by showing the presence of os
lations in the limit of strong coupling and then we analy
the behavior near the bifurcation point.

C. The limit of strong coupling

To define the limit of strong coupling, we assume th
gi j 5gg̃i j , where g̃i j is of O(1) and take the limit ofg
→`. Summing the voltage dynamics term in Eq.~5! over all
cells we obtain
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V̇52aV1
b

N (
i 51

N

Xi , ~6!

Ẋi52V1A~Xi ,Yi !2dVi ,

Ẏi5B~Xi ,Yi !,

where

V[
1

N (
i 51

N

Vi , ~7!

dVi[Vi2V, ~8!

are the mean membrane potential across the network an
fluctuations, respectively. The dynamics of the fluctuatio
of the membrane potential is given by

dVẆ 52adVW 1bdXW 2gG̃dVW , ~9!

where the vector notation is over theN network cells

dXi[Xi2
1

N (
j 51

N

Xj , ~10!

and the matrixG̃ is defined by

G̃i j [d i j (
q51

N

g̃iq2g̃i j ~11!

whered i j is the Kronecker delta function. Generally,G̃ has
only one zero eigenvalue, which corresponds to the homo
neous eigenvector. The projection ofdXW on all the heteroge-
neous eigenvectors ofG̃ is of O(1). Thus, in the limit ofg
@1 Eq. ~9! becomes

dVW 5
b

g
G̃21dXW 1OS 1

g2D ~12!

and therefore,dVW is of O(1/g). Taking the limit of g→`,
the network dynamics, Eq.~5! becomes

V̇52aV1
b

N (
i 51

N

Xi , ~13!

Ẋi52V1A~Xi ,Yi !,

Ẏi5B~Xi ,Yi !.

The dynamics of the membrane potentialV in Eq. ~13! is
only sensitive to perturbations ofXW in the homogeneous di
rection. Therefore, the fixed point is only stable in the hom
geneous direction but is unstable to perturbations in the
erogeneous directions. This can be readily seen
linearizing Eq. ~13! around the homogeneous zero fixe
point. The eigenvalues of the stability matrix are the~stable!
6-2
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eigenvalues of the stability matrix of the dynamics of t
isolated cell around the zero fixed pointQ, which correspond
to the homogeneous direction and the eigenvalues of
stability matrix of the dynamics of the internal variabl
around the zero fixed pointQ8, which correspond to the
heterogeneous directions. Since by constructionQ8 has at
least one unstable eigenvector, the homogeneous zero
point of Eq.~13! is unstable.

Note that there are no stable homogeneous solution
Eq. ~13! because such a solution is described by the eq
tions of the isolated cell, Eq.~1!, which by construction has
only one attractor, the zero fixed point. This implies that
symmetry between the different pairs$(Xi ,Yi)% is necessar-
ily broken in the asymptotic solution to Eq.~13!. Thus, al-
though the internal variables of the different cells ‘‘see’’ t
same membrane potential, they respond to it differen
Therefore, the dynamics of the internal variables, with
driving forceV(t), in Eq. ~13!

Ẋi52V~ t !1A~Xi ,Yi !, ~14!

Ẏi5B~Xi ,Yi !,

has more than one asymptotic solution. Numerical simu
tions of Eq. ~13! with several different models of interna
variables show that forN52, the internal variables of the
two cells oscillate in antiphase, whereas the mutual me
brane potential oscillates with double the frequency. Wh
N.2, the dynamics exhibits many different limit cycle a
tractors, in which the activity of the internal variables of t
different cells is clustered into two or more clusters, w
different numbers of cells in each cluster. An example of t
behavior is presented below.

Interestingly, Eq.~13! also describes the dynamics ofN
excitatory oscillatory cells (Xi ,Yi), which are all coupled via
one inhibitory cellV. The dynamics of each of the oscillator
cells, in isolation, is described by Eq.~2!, and each cell ex-
cites one global linear inhibitory cell with a couplin
strengthb/N. The latter inhibits each of the excitatory cel
with a coupling strength of21. WhenN51, Eq. ~13! re-
verts to Eq.~1! and the inhibitory cell suppresses the osc
lations of the excitatory cell. However, whenN.1, V exerts
a global negative feedback, which suppresses the oscillat
in the homogeneous direction but retains the instability in
heterogeneous direction. Indeed, the study of the dynam
of networks of excitatory neurons, all coupled to one glo
inhibitory cell has shown clustering of the excitatory ce
similar to our results@9#.

In general,G̃ has only one zero eigenvalue, which corr
sponds to the homogeneous eigenvector, and in the lim
g→`, the network dynamics is independent of the details
the architecture. However, wheng@1 butg,`, the connec-
tivity architecture influences the fluctuations in the me
brane potential of the different cells, which are ofO(1/g).
Taking only O(1/g) elements in Eq.~12! and decomposing
dVW ,dXW in terms of the eigenvectors ofG̃ we get
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, ~15!

wherevm,xm are the projections of the vectorsdVW ,dXW , re-
spectively, on themth heterogeneous eigenvector of matr
G̃, andG̃m is the corresponding eigenvalue. In generaldXW is
of O(1), and up tocorrections ofO(1/g) its dynamics is
determined by Eq.~13!. Therefore, it is reasonable to assum
that dXW is almost independent of the architecture and
projections on all the heterogenous eigenvectors of matriG̃
are comparable. Therefore the spatial structure of theO(1/g)
membrane potential fluctuations, which are determined
Eq. ~15!, are dominated by the eigenvectors that corresp
to the the smallest nonzero eigenvalues ofG̃.

D. The bifurcation point

Above we have seen that the homogeneous zero fi
point (Vi5Xi5Yi50) is stable in the absence of couplin
but is unstable in the limit of strong coupling. Here we i
vestigate the bifurcation point, where the homogeneous fi
point is destabilized and oscillations emerge. Linearizing
network’s dynamical equations, Eq.~5!, around this homo-
geneous fixed point yields

V̇i52aVi1(
j 51

N

gi j ~Vj2Vi !1bXi , ~16!

Ẋi52Vi1
]A~0,0!

]X
Xi1

]A~0,0!

]Y
Yi ,

Ẏi5
]B~0,0!

]X
Xi1

]B~0,0!

]Y
Yi .

It is convenient to represent the dynamical variables in te
of the eigenvectors of the connectivity matrixG5gG̃,

Vi5 (
m51

N

vmRi
m , ~17!

Xi5 (
m51

N

xmRi
m ,

Yi5 (
m51

N

ymRi
m ,

where $RW m%m51
N are the eigenvectors ofG with the corre-

sponding eigenvalues$Gm%m51
N . Substituting Eq.~17! in Eq.

~16! uncouples the different cells and Eq.~16! becomes
6-3
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d

dt S vm

xm

ym
D 5F 2a2Gm b 0

21
]A~0,0!

]X

]A~0,0!

]Y

0
]B~0,0!

]X

]B~0,0!

]Y

G S vm

xm

ym
D .

~18!

Equation~18! is, in fact, the linearized equation of an is
lated cell around its zero fixed point, with an additional pa
sive conductanceGm. Thus, near the fixed point the syste
dynamics can be mapped into the dynamics of an isola
cell with additional ‘‘stabilizing’’ terms,

V̇52~a1Gm!V1bX, ~19!

Ẋ52V1A~X,Y!,

Ẏ5B~X,Y!.

Hence, the homogeneous fixed point of the system is de
bilized by electrical coupling if and only if there exists e
genvalueGm such that the fixed point of Eq.~19! is unstable.
The eigenvalue that corresponds to the homogeneous e
vector ofG is Gh50. Hence, instability can only arise in
heterogeneous direction. As we have seen above, in the
of strong coupling, the homogeneous fixed point becom
unstable. This implies that for a sufficiently largeGm, the
zero fixed point of Eq.~19! is unstable. Thus, as the overa
coupling strength is increased, instability arises when
largest eigenvalue of matrixG exceeds a critical valueGc.
Since the dynamics of Eq.~2! consists of an unstable fixe
point and a stable limit cycle, the simplest scenario for
generation of the network instability is via a Hopf bifurc
tion. When the bifurcation is a normal Hopf, the frequency
the oscillations near the bifurcation is determined by
imaginary part of the conjugate eigenvalues of the stab
matrix around the zero fixed point of Eq.~19!, with Gm

5Gc. Thus, near the bifurcation point, the frequency of t
oscillations is only dependent on the properties of the i
lated cell and is independent of the architecture. In contr
the spatial structure of the oscillations near this bifurcat
point is determined by the eigenvector, which correspond
the largest eigenvalue ofG. This eigenvector depends sole
on the architecture of the electrical connections and is in
pendent of the properties of the isolated cell. Note that m
trix G is real and symmetric and thus its eigenvectors
real. Therefore, if there is no redundancy in the largest
genvalue, all cells will oscillate either in phase or in an
phase, depending on the corresponding eigenvector. In
case ofN52, there is only one heterogeneous eigenvec
and the two cells will oscillate in an antiphase direction.

Thus, near the bifurcation point, the architecture of
network influences the dynamics of the network via the
genvector, which corresponds to the largest eigenvalue
contrast, in the limit of strong coupling, it is the eigenvecto
that correspond to the smaller eigenvalues that contrib
more to the dynamics of the network.
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E. The limit of fast membrane dynamics

Our mechanism requires that the membrane potential s
presses the oscillations of the internal variables in the
lated cell by exerting a negative feedback. This can also
achieved if the dynamics of the membrane potential is
stantaneous. Changing the time constant of the membran
Eq. ~1! is equivalent to changinga,b while keeping the ratio
b/a constant. In the limit of fast membrane dynamics, t
membrane potential follows its fixed point equations, a
Eq. ~5! becomes

XẆ 52b~G1aI= !21XW 1AW ~Xi ,Yi !, ~20!

YẆ 5BW ~Xi ,Yi !,

where Ai[A(Xi ,Yi) and Bi[B(Xi ,Yi). When N51, Eq.
~20! describe the dynamics of the isolated variables with
extra negative feedback term for variableX of strength
b/a. If Q8 and b/a are such that tr(Q8),b/a
,@ iQ8i /]B(0,0)/]Y#, then forN51, this negative feedback
will stabilize the fixed point. However, whenN.1, diago-
nalizing Eq. ~20! around the homogeneous fixed point r
veals that whereas the strength of the negative feedbac
the homogeneous direction remainsb/a, it decreases to
b/(a1Gm) in the heterogeneous directions, whereGm are
the eigenvalues ofG that correspond to these directions. F
large enoughGm, this negative feedback is too weak to su
press fluctuations and the homogeneous zero fixed poin
no longer stable. This bifurcation takes place f
Gc5b/tr(Q8)2a, and the simplest scenario is a Ho
bifurcation, which leads to oscillations.

In the limit of strong coupling, in general@(G1aI )21# i j
→1/aN and Eq.~20! yields

Ẋi52
b

a

1

N (
j 51

N

Xj1A~Xi ,Yi !, ~21!

Ẏi5B~Xi ,Yi !,

which represents the dynamics ofN oscillators that mutually
inhibit each other. Numerical simulations of Eq.~21! with
different nonlinear models show similar clustering behav
to those observed with the dynamics of Eq.~13!. Similar
results have been observed in the study of the dynamic
networks of cells, mutually coupled with inhibitory synaps
@10#.

III. ELECTRICALLY COUPLED MODEL
WITH A Van Der Pol OSCILLATOR

A. The model

Our mechanism can be realized with different nonlinea
ties of the internal variables. Here we demonstrate it in
model where the dynamics of the internal variables, Eq.~2!,
is described by a Van der Pol oscillator@11#,

Ẋ52Y10.4X~51Y2Y2!, ~22!
6-4
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Ẏ5X.

These equations have one fixed point at (0,0). Linear sta
ity analysis reveals that this fixed point is unstable, and
meric simulations show that these equations have only
attractor, which is a limit cycle~Fig. 1!.

The isolated cell is generated by linear coupling one
the internal variablesX to a passive membrane potentialV,
yielding

V̇52aV1bX, ~23!

Ẋ52V2Y10.4X~51Y2Y2!,

Ẏ5X,

wherea,b>0 are parameters.
Linearizing Eq.~23! around the fixed point (0,0,0) an

applying the Routh-Hurwitz condition, we find that the fixe
point is stable if and only ifb.8 and (b142Ab228b)/4
,a,(b141Ab228b)/4.

Figure 2 shows the dynamics of Eq.~23! with a53; b
510. In contrast to the unstable zero fixed point and
stable limit cycle of Eq.~22! shown in Fig. 1, the zero fixed
point of Eq. ~23! is stable and numeric simulations sugge
that it is also globally stable, in agreement with the requi
ments of our mechanism as described above.

B. The bifurcation point

The dynamics of the electrically coupled network is d
scribed by

V̇i52aVi1bXi1(
j 51

N

gi j ~Vj2Vi !, ~24!

Ẋi52Vi2Yi10.4Xi~51Yi2Yi
2!,

Ẏi5Xi .

FIG. 1. Oscillations of the internal variables. The zero fix
point of Eq. ~22! is unstable and the dynamics converges to lim
cycle oscillations~a!, in X and ~b! in Y.
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In order to investigate the effect of the electrical coupling
the dynamics of the network it is useful to analyze the s
bility of the homogeneous zero fixed point. Linearizing E
~24! around its zero fixed point and applying the Rout
Hurwitz condition reveals that the fixed point is unstable
and only if the largest eigenvalue of the connectivity mat
G exceeds the critical valueGc5(11A5)/2, and the type of
bifurcation is Hopf. Figure 3 illustrates the dynamics of E
~24! near the bifurcation point, where the largest eigenva
of the connectivity matrixG is equal toGc10.02. Numerical
simulations show that the bifurcation is a normal Hopf a
thus, the spatial structure of the asymptotic solution near
bifurcation point is determined by the eigenvector that c
responds to the largest eigenvalue. WhenN52, the direction
of the heterogeneous eigenvector ofG is (1,21). This an-
tiphase structure of the oscillations is shown in Fig. 3~a! for
N52. When the number of cells is larger, the relative pha
and amplitudes of the membrane potential oscillations of
different cells is determined by the connectivity architectu
This is illustrated in Figs. 3~b!–3~c! for N54. In Fig. 3~b!,
cells 2–4 are connected to the first cell with the same c
pling strength, and therefore the oscillations closely follo
the eigenvector (3,21,21,21), which corresponds to the
largest eigenvalue of the connectivity matrixG. In contrast,
the connectivity of the cells in Fig. 3~c! is a nearest neighbo
along a line with equal coupling strength. In this case
eigenvector (1,212A2,11A2,21) corresponds to the larg
est eigenvalue of the connectivity matrixG and this is re-
flected in the spatiotemporal structure of the oscillations.

C. Infinite coupling

In the limit of infinitely strong coupling, the membran
potentials of the different cells are equal and their dynam
is determined by the dynamics of the mean membrane
tential. Thus, Eq.~24! is reduced to

t

FIG. 2. The isolated cell is not oscillating. The zero fixed po
of Eq. ~23! is stable and after a perturbation the internal variab
~a!, X and~b!, Y and~c!, the membrane potentialV converge to the
zero fixed point.
6-5



th
on
in
st

i
th
it
il
o

4

n

o
is
ane

fre-
of
al
ten-
-

tem
o-

lu-

ect

u-
a-
of
ve

e

-
pe

ci

o
ge

his

re
r-

on

g

nt
p

illa-
om-

-
les.

nal
t to
a
ial
the

r in
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V̇52aV1
b

N (
i 51

N

Xi , ~25!

Ẋi52V2Yi10.4Xi~51Yi2Yi
2!,

Ẏi5Xi .

Since the homogeneous solution of Eq.~25! is unstable, the
symmetry between the different cells is broken and
asymptotic solution is heterogeneous. Numerical simulati
show that in these solutions the internal variables group
several clusters. The internal variables within each clu
oscillate in phase but not in phase with those of the cells
other clusters. The type of symmetry breaking determines
number of such different heterogeneous solutions, all w
the same shape of the common membrane potential osc
tions but each with different cells having a different phase
internal variables oscillations. This is illustrated in Fig.
where Eq.~25! is simulated withN54. In Figs. 4~a1! and
4~b1! the values ofX for the four cells is shown as a functio

FIG. 3. Network oscillations near the bifurcation point. Sim
lating Eq.~24! with the largest eigenvalue of the connectivity m
trix G being equal toGc10.02 shows that the spatial structure
the membrane potential oscillations is determined by the eigen
tor that corresponds to the largest eigenvalue.~a! N52: The two
consecutive traces represent the time course of the membran
tential oscillations of the two cells with connectivity ofg50.819.
The only nonzero eigenvalue ofG corresponds to the heteroge
neous eigenvector (21,1). This is reflected in the antiphase sha
of the membrane potential oscillations.~b! The four consecutive
traces represent the time course of the membrane potential os
tions of cells 1–4~top to bottom! in a network whereN54. In this
network, cell 1 is connected to cells 2–4 with a coupling strength
g50.4095. The eigenvector, which corresponds to the largest ei
value of the connectivity matrixG, is (3,21,21,21), and the
membrane potential oscillations of the four cells closely follow t
eigenvector.~c! Identical to~b! with a different connectivity matrix.
Here the four cells are placed along a straight line with nea
neighbors coupling strength ofg50.4798. The eigenvector that co
responds to the largest eigenvalue is (1,212A2,11A2,21) and
this is reflected in the shape of the membrane potential oscillati
The size of the vertical bar in~a!–~c! is 0.5.
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of time and in Figs. 4~a2! and 4~b2! their common membrane
potential is shown as a function of time. In Fig. 4~a1!, the
internal variables of the cells cluster into two clusters of tw
cells: @(1,2),(3,4)#. The existence of these two clusters
reflected in the spatiotemporal structure of the membr
potential oscillations, Fig. 4~a2!. An increase inX in one of
the clusters generates an increase inV, and thus the fre-
quency of membrane potential oscillations is double the
quency of the internal variables oscillations. This type
symmetry breaking implies that there exist two addition
stable asymptotic solutions with the same membrane po
tial oscillations but with different clustering pairs of the in
ternal variables:@(1,3),(2,4)#,@(1,4),(2,3)#. In addition to
these solutions, numerical simulations show that this sys
exhibits another type of typical symmetry breaking. This s
lution, which is characterized by a different clustering so
tion is illustrated in Fig. 4~b!. In Fig. 4~b1!, the internal
variables of all four cells oscillate out of phase with resp

c-

po-

lla-

f
n-

st

s.

FIG. 4. Clustering of network oscillations in the limit of stron
coupling. Simulating Eq.~25! with N54 results in two types of
asymptotic solutions depending on the initial conditions.~a! Clus-
tering into two clusters.~a1! The four consecutive traces represe
the time course ofX for the four cells. The internal variables grou
into two clusters of two cells@(1,2),(3,4)#, where oscillations
within a cluster are in-phase but are in antiphase with the osc
tions of the other cluster. This is reflected in the shape of the c
mon membrane potentialV. ~a2! An increase inX in one of the
clusters generates an increase inV. Thus, the frequency of mem
brane potential oscillations is double that of the internal variab
~b! Clustering into four clusters.~b1! Different initial conditions
result in a different asymptotic solution. In this case, the inter
variables of each of the cells oscillate out of phase with respec
all other cells.~b2! An increase inX in one of the cells generates
smaller increase inV, and the frequency of membrane potent
oscillations is four times that of the internal variables. Note that
time courses of the internal variables oscillations,~a1! and~b1! are
very similar to the oscillations ofX in Fig. 1~a!, where there was no
interaction with membrane potential. The size of the vertical ba
~a1! and ~b1! is 10.
6-6
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OSCILLATIONS BY SYMMETRY BREAKING IN . . . PHYSICAL REVIEW E65 051926
to all other internal variables. Thus, the frequency of
membrane potential oscillations, Fig. 4~b2!, is four times that
of the internal variables. This type of symmetry breaki
generates five additional solutions, all with the same str
ture of membrane potential oscillations but with a differe
ordering of the internal variables.

We have simulated large networks of up to 500 cells
the limit of infinitely strong coupling. The asymptotic solu
tion to Eq. ~25! with N5500 depends on the initial cond
tions, and typically, the network forms three to four cluste
where the number of cells in each cluster differs. This
illustrated in Fig. 5: the internal variablesX of 30 randomly
chosen cells are shown in Fig. 5~a! and the common mem
brane potential is shown in Fig. 5~b!. The oscillations of the
internal variables in Fig. 5~a! show clear clustering into fou
clusters. An increase inX in one of the clusters correspond
to an increase inV, Fig. 5~b!, and the amplitude of this in
crease is monotonous with the number of cells in the clus
Thus, the detailed shape of the common oscillating poten
bears a signature of the clustering structure of the inte
variables.

FIG. 5. Clustering of network oscillations in a large networ
Simulating Eq.~25! with N5500 typically results here in the for
mation of three to four clusters.~a! The time courses ofX for 30
randomly chosen cells show clear clustering into four clusters
varying sizes.~b! This clustering is reflected in the shape of t
common membrane potentialV. An increase inX in one of the
clusters generates an increase inV, and the amplitude of the in
crease is dependent on the number of cells in the cluster. The si
the vertical bar in~a! is 10.
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D. Strong coupling

When the coupling is finite, the network dynamics is d
pendent on the connectivity architecture and on the coup
strength. Here we analyze how the coupling strength in
ences the network behavior in the strong coupling regime
two network architectures: fully connected network and o
dimensional lattice~also known as the ‘‘ring model’’!.

1. Fully connected network

Here we analyze the dynamics of a network where
cells are coupled to all the other cells with the same coup
strengthg. In this case the connectivity matrixG has one
zero eigenvalue, which corresponds to the homogeneou
rection andN21 eigenvalues, all equal togN, which corre-
spond to the heterogenous directions. Hence, the proper
ing of the coupling strength isg5ḡ/N. How does the size of
ḡ influence the network dynamics? Numerical simulatio
show that the existence of several nontrivial clustering so
tions, which are seen in the infinite coupling regime, is
tained even whenḡ is of O(1). This behavior is illustrated in
Fig. 6, where Eq.~24! is simulated for a fully connected
network with N54 and ḡ532. In Fig. 6~a!, the cells are
clustered into two clusters of two cells, similar to Fig. 4~a!
whereas in Fig. 6~b! the cells are grouped into four cluster
similar to Fig. 4~b!. The main effect of havingfinite g, is the
presence of spatial fluctuations in the membrane potentia
is evident in Figs. 6~a2! and 6~b2! @compare with Figs. 4~a2!
and 4~b2!#. In the limit of strong coupling, these spatial fluc
tuations are determined by Eq.~15!. Since all nonzero eigen
values ofG are equal toḡ, in the limit of ḡ@1, the mem-
brane potential fluctuations are determined by

DV[AK 1

N
idVW i2L 5

b

ḡ
AK 1

N
idXW i2L . ~26!

HeredXW is determined by the clustering configuration and
of O(1) with corrections that are ofO(1/g). This is illus-
trated in Fig. 7 that shows the standard deviation of the fl
tuations, averaged over the four cells and over 200 time u
as a function of 1/ḡ. Similar to Figs. 4 and 5, different initia
conditions could result in clustering into two clusters~de-
noted here by crosses! or four clusters~denoted here by
boxes!. Note that each clustering solution forms a straig
line with a different slope, reflecting the different shape ofXW
in the asymptotic solution.

2. One-dimensional lattice

The dependence of the fluctuations inV on the coupling
strength in a one-dimensional lattice model is more comp
Here we analyze a model in which each cell is coupled to
two nearest neighbors with equal coupling strengthg with
periodic boundary conditions. The eigenvectors of the c
nectivity matrixG in this model are the Fourier modes, an
the eigenvalues areGk52g(@12cos(2pk/N)#, k51, . . . ,N.
Thus, in the thermodynamical limit, whenN→`, the eigen-

f

of
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values with small values ofk are small even wheng@1.
Thus, the fluctuations in the membrane potential canno
approximated by Eq.~15!. Rewriting Eq.~9! in the spatial
and temporal Fourier space we obtain

vk~v!5
bxk~v!

a1Gk2 ivb
, ~27!

wherevk(v) and xk(v) are the Fourier coefficients of th
membrane potentialVW (t) and the internal variablesXW (t), re-
spectively. Using Parseval’s theorem, the mean spatial fl
tuation of the membrane potential is

DV5A1

N (
k51

N21 E dvuvk~v!u2. ~28!

Next we assume thatxk(v) is only weakly dependent onk.
Indeed, numerical simulations show that forg,N@1, XW has a
considerable projection on all the eigenvectors ofG. Thus,

FIG. 6. Clustering of network oscillations with moderate co
pling. Simulating Eq.~24! with N54 and a connectivity architec

ture of all to all withḡiÞ j532 reveals similar patterns to Fig. 4.~a!
Clustering into two clusters.~a1! The four consecutive traces rep
resent the time course ofX of the four cells. The internal variable
group into two clusters of two cells, similar to Fig. 4~a1!. ~a2! The
membrane potentials of the four cells. Note that an increase inX in
one cluster generates an increase inV in the cells in that cluster, and
a smaller increase inV in the cells of the other cluster, which i
induced via the electrical connections.~b1! Different initial condi-
tions result in a different asymptotic solution. In this case, the
ternal variables of each of the cells oscillate out of phase w
respect to all other cells, similar to Fig. 4~b1!. This is reflected in
the shape of the membrane potential oscillations of the diffe
cells ~b2!. An increase inX in one of the cells generates an increa
in V in the corresponding cell, and a smaller increase inV in all the
other cells. The size of the vertical bar in~a1! and~b1! is 10 and in
~a2! and ~b2! is 5.
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sinceg@1, most of the contribution toDV comes from the
small k, andDV can be written as

DV}
A 1

Ag
E

2pAg/N

`

dqE dvU xS q

Ag
,v D

a1q22 ivb
U 2

. ~29!

Most of the contribution to the integral overq comes from
q5O(1). Thus, assuming thatx(s,v) is smooth with respec
to s, we approximate Eq.~29! by

DV}A 1

Ag
E

2pAg/N

`

dqE dvU x~0,v!

a1q22 ivb
U2

. ~30!

Equation~30! determines the scaling behavior ofDV in the
limit of large N and g. We first consider the themodynam
limit, where the limit of largeg is taken after theN→`
limit. In this case, the lower limit of the integral goes to ze
and Eq.~30! yields

DV}g21/4. ~31!

-
h

nt

FIG. 7. The spatial fluctuations in the membrane potential a
function of the coupling strength in a fully connected netwo

Equation~24! is simulated withN54 andgiÞ j5ḡ/N for different

values of ḡ. The fluctuations were calculated by computingDV
[A^dV2&, where the mean is taken over the four cells and over 2
time units. Crosses represent events in which the initial conditi
resulted in grouping of the cells into two clusters, similar to Fig
4~a! and 6~a! and the boxes represent events in which the ini
conditions resulted in grouping of the cells into four clusters, sim
lar to Figs. 4~b! and 6~b!. Each type of asymptotic solution forms
straight line, with a different slope in agreement with Eq.~15!. The

different slope results from the different shape ofXW in the
asymptotic solution.
6-8
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OSCILLATIONS BY SYMMETRY BREAKING IN . . . PHYSICAL REVIEW E65 051926
This behavior is valid in a finite, but large systems in t
regime ofg!N2. In contrast, wheng@N2, the lower limit of
the integral dominates the result and Eq.~30! becomes

DV}
1

g
N3/2 ~32!

in agreement with Eq.~15!. This behavior is illustrated in
Fig. 8, where the dynamics of Eq.~24! is simulated in a
one-dimensional lattice model ofN5200, with nearest
neighbor connectivity and periodic boundary conditions.DV
is plotted as a function ofg. The slopes of the two straigh
lines are21 and2 1

4 . In theg@N2 regime,DV is inversely
proportional tog, in agreement with Eq.~32!. As g de-
creases, the slope ofDV vs g decreases, which is consiste
with Eq. ~31!. In contrast to the smooth behavior in theg
@N2 regime, wheng!N2 there are large fluctuations in th
value of DV for adjacent values ofg. These fluctuations
result from the fact that in this regime, changingg resulted in
changing the clustering pattern, thereby changing the va

FIG. 8. The spatial fluctuations in the membrane potential a
function of the coupling strength in a one-dimensional nea
neighbor lattice model. Equation~24! is simulated withN5200 and
gi j 5g(d i , j 111d i , j 21) and periodic boundary conditions. The valu
of g is initially set tog53.33106, and every 1000 time unitsg is
reduced by 22%. For every value ofg, DV is calculated by averag
ing over 200 time units and is displayed in a log-log plot. T
slopes of the straight lines are21 and20.25. For large values ofg,
DV}1/g, in agreement with Eq.~32!. For smaller values ofg, the
slope becomes less negative, in agreement with Eq.~31!. In this
regime, almost every decrease ing changed the clustering pattern
the network, resulting in large fluctuations in the value ofDV for
adjacent values ofg.
05192
e

of xk(v). SinceDV is proportional toxk(v), the changing of
the clustering pattern for adjacent values ofg generates the
‘‘noise’’ in Fig. 8.

Equation~30! can be used to derive a scaling function f
DV, which holds in the intermediate regime,

DV5
1

g
N3/2FS N2

g D , ~33!

whereF(Z→0)5O(1) andF(Z→`)}Z23/4. This scaling
behavior is illustrated in Fig. 9, where Eq.~24! is simulated
for one dimensional lattice models with different values ofN
andg in the same paradigm as in Fig. 8.DVgN23/2 is shown
as a function ofN2/g. The straight line has a slope of2 3

4 .
The simulations results show that, indeed,DV can be de-
scribed by the scaling law as in Eq.~33!. Note, however, that
different initial conditions result in different clustering pa
terns. Since the initial conditions are random, they differ
the simulations for the different values ofN, and therefore
the value ofF(0) is slightly different for the differentN.

IV. DISCUSSION

A. Summary of the main results

Electrical coupling is often considered to synchronize a
thus homogenize the activity of electrically coupled n

a
st

FIG. 9. The scaling behavior of a one-dimensional near
neighbor lattice model. Equation~24! is simulated with gi j

5g(d i , j 111d i , j 21) and periodic boundary conditions forN510
~circles!, 20 ~stars!, 50 ~crosses!, 100~boxes!, 200~triangles!. DV is
calculated for different values ofg in the same paradigm as in Fig
8. DVgN23/2 is shown as a function ofN2/g. The straight line has
a slope of20.75. Note thatDV can be approximated by the scalin
law of Eq. ~33!. The fluctuations from the scaling in theN2/g!1
regime result from the fact that the initial conditions are rando
thus resulting in different patterns of clustering for each value ofN,
which result in a different value ofF(0).
6-9
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works. This paper, together with previous works, shows t
electrical coupling can destabilize the homogeneous
state and break the spatiotemporal symmetry in the netw
This paper deals with the mechanism for the generation
oscillations by electrical coupling of identical nonoscillatin
excitable elements. The basic concept is that the interac
of the membrane potential with the internal variables s
presses the tendency of the latter to oscillate. The elect
coupling diminishes the suppression capability of the pot
tial in the heterogeneous direction, thereby destabilizes
homogeneous fixed point and gives rise to oscillations v
Hopf bifurcation. Thus, the homogeneous fixed point is u
stable even for arbitrarily large coupling strengths, where
membrane potentials of the different cells oscillate alm
in-phase. This mechanism leads to a surprising, but sim
experimental prediction: affixing the membrane potential
an isolated cell to its resting potential value~voltage clamp!
will generate oscillations of the internal variables, which w
generate oscillations in the current needed for the clamp

When the bifurcation is normal, the frequency of the o
cillations near the bifurcation point is solely dependent
the properties of the isolated cell and is independent of
architecture. In contrast, the spatial structure of the osc
tions is determined by the network architecture, which,
general, leads to either in-phase or antiphase oscillation

Particular emphasis was given to the limit of strong co
pling, with different network architectures. When the co
pling strength is infinite, the network dynamics has ma
attractors, which are characterized by the grouping of
different cells into several clusters. When the coupling
strong but not infinite, the clustering solutions are retain
but the spatial fluctuations of the membrane potential dep
on the network architecture. In the fully connected networ
the fluctuations in the membrane potential are inversely p
portional to the coupling strength. In contrast, in the on
dimensional lattice model, we have shown that there are
asymptotic regimes, depending on the way of taking the li
of large network and strong coupling.

In general, our mechanism characterizes a large famil
dynamical systems. For reasons of clarity, we have discu
it here in a less general form, where the number of inter
variables is two, the dynamics of the membrane potentia
linear, and the membrane potential is linearly coupled to
of the internal variables. However, since much of the ana
sis is done by linearizing near the fixed point, the gener
zation to more complex models is straightforward.

B. Comparison to other mechanisms

Another model in which electrical coupling of identic
nonoscillating cells generates oscillations was proposed
Sherman and Rinzel@12#. In their model, in addition to a
stable fixed point, stable oscillations of the membrane po
tials exist in a restricted range of values of the electri
coupling. The bifurcation in their model is far from the h
mogeneous fixed point, and thus the fixed point rema
stable for all coupling strengths. Ermentrout and Lewis@5#
proposed a continuum model of population dynamics,
which oscillatory behavior is dependent on diffusion of o
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of the species. In a discrete version of their model, an
crease in the coupling strength generates oscillations v
Hopf bifurcation. However, these oscillations are limited to
strict regime of coupling strengths, and in the limit of stro
coupling the homogeneous fixed point is stable. This diff
ence results from the fact that the fixed point of the ‘‘intern
variables,’’ Eq.~2! is stable in their model, but is unstable
our mechanism.

A mechanism for generation of oscillations by electric
coupling, which relies on heterogeneity in the properties
the coupled cells, has been proposed@13,14#. In this mecha-
nism, although the isolated cells do not oscillate, when th
are strongly coupled they behave similarly to an isolated
with ‘‘average’’ properties. This ‘‘average’’ cell is oscillatory
Thus, similar to our model, oscillations in this case a
present even for arbitrarily strong coupling. However, in t
heterogeneous model, the internal variables lock in a uni
fashion to the oscillating potential and therefore they os
late in phase. It is the heterogeneity in the properties of
different cells that enables a moderate current flow e
when the membrane potentials of the cells are very sim
and thus generates the oscillatory behavior. In contrast,
mechanism does not rely on heterogeneity in the isola
cells properties. The heterogeneity is generated by a spo
neous symmetry breaking, in which the internal variables
the different cells lock to the common membrane potentia
a different manner.

C. Relevance to biological systems

Several biological systems including the inferior olive, t
locus coeruleus, theb-pancreatic cells, and the aortic smoo
muscle cells exhibit oscillations that depend in some way
electrical coupling. Network oscillations in these systems
usually synchronized and in-phase, which is consistent w
our mechanism, but not with the homogeneous models
scribed above. Our proposed mechanism may be applic
to some of these systems. Of particular importance are
possible clinical implications of our dynamical mechanis
It has been suggested that in Creutzfeldt-Jakob disease
sion of neuronal processes, particularly dendrites, may l
to abnormal electrotonic coupling between the cells, gen
ating periodic EEG discharges@15#. In addition, we have
recently applied our mechanism to explain the phenome
of ‘‘alcohol withdrawal tremor.’’ Long-term abuse of alcoho
which blocks the gap junctions, may induce a strengthen
of the electrical coupling in the inferior olive. During the firs
days of abstinence, the excessive electrical coupling ca
exaggerated synchronized membrane potential oscillati
which manifest as a large amplitude tremor@16#.

This mechanism can be realized in different biophysi
models. Elsewhere@7# we have proposed that the intern
variables are the calcium concentrations in the cytoplasm
cells and in cellular organelles; e.g., endoplasmatic reticu
and mitochondria. Instability of these internal variabl
arises from the calcium-induced calcium release current.
increase in the calcium concentration in the cytoplasm t
gers the opening of calcium channels in the organelles
6-10
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which the calcium concentration is much higher, causin
flow of calcium from the organelles to the cytoplasm. Th
positive feedback loop is terminated with the depletion
calcium from the organelles@17#. The stability of the isolated
cell results from the interaction of the calcium concentrat
in the cytoplasm with the membrane via the calcium dep
dent potassium current and the voltage dependent calc
current. Alternatively, this mechanism can be realized in
network of two-compartment neurons. One compartmen
an excitable soma whose parameters play the role of
internal variables, and a passive dendrite whose memb
potential plays the role ofV. The isolated soma of the neu
rons is oscillatory but its interaction with the dendrite dam
ens these oscillations, yielding nonoscillating cells. Electri
coupling via dendro-dendritic gap junctions in this mod
leads to sustained oscillations@8#.

A growing number of studies in recent years have de
onstrated that electrical coupling in the central nervous s
tem is far more common than was previously considered
tl.
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has been described in cortical@18# and cerebellar inhibitory
neurons@19# as well as in the hippocampus@20# and locus
coeruleus@21#. In all these studies it has usually been a
sumed that electrotonic coupling serves as a synchroni
device, or as a fast excitatory pathway. In this work we s
gest that in addition, electrical coupling can serve as a g
erator of oscillatory activity. Although one would expect th
oscillatory activity, which is associated with electroton
coupling, will be rather homogeneous, we have shown tha
does not decrease the flexibility of the network. On the c
trary it furnishes it with a wide range of dynamic features
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